
Efficient algorithms for
fingerprint similarity search

and diversity selection
Andrew Dalke

dalke@dalkescientific.com

Cambridge Cheminformatics Network Meeting

8 June 2022

Fingerprint Similarity
Search is Easy!

• binary fingerprints - not count fingerprints
• "short" - typically in the 100s or 1,000s of bits
• "dense" - typically 5%-40% of the bits are on
• exact - not approximate similarity

Tanimoto Similarity

I follow Daylight nomenclature

A is the count of the bits on in object A.

B is the count of the bits on in object B.

c is the count of the bits on in both object A and object B.

"This nomenclature differs from that used
by others, in particular the Sheffield group."

ht
tp
s:
//w
w
w.
da
yl
ig
ht
.c
om
/d
ay
ht
m
l/d
oc
/th
eo
ry
/th
eo
ry
.fi
ng
er
.h
tm
l

Tanimoto(FPA, FPB) = || FPA ∧ FPB || / || FPA ∨ FPB ||

= c / (A + B - c)

= number of bits in intersection /
 number of bits in the union

Avoid double-counting the bits in common

A Friday Afternoon...
... in 1986, shortly after publications by Willett, Winterman, Bawden

% rdkit2fps --maccs166 chembl_30.sdf.gz -o maccs.fps

% head maccs.fps

#FPS1

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2021.09.4 chemfp/4.0

#source=/Users/dalke/databases/chembl_30.sdf.gz

#date=2022-05-28T20:56:45

000000010844002001b49d900002c01354a178a813	 CHEMBL153534

000000010004300001f6bedf897afe838d3ffeff1b	 CHEMBL440060

000000010004300081f20ecf8972fed59d7ff6ff1f	 CHEMBL440245

Examples of chemfp's "FPS" fingerprint exchange format.

Tanimoto in Python
>>> fpA = 0x000000003000000001d414d91323915380f138ea1f # CHEMBL113

>>> fpB = 0x000000003000000001d414d91323915380e178ea1f # CHEMBL1114

>>> union = fpA | fpB

>>> intersection = fpA & fpB

>>>

>>> fpA.bit_count()

46

>>> fpB.bit_count()

46

>>> union.bit_count()

47

>>> intersection.bit_count()

45

>>> tanimoto = intersection.bit_count() / union.bit_count()

>>> tanimoto

0.9574468085106383

int.bit_count() added in Python 3.10

Caffeine and theobromine have very similar MACCS fingerprints.

What's similar to caffeine?
MACCS fingerprint for caffeine

query = 0x000000003000000001d414d91323915380f138ea1f

hits = []

for line in open("maccs.fps"):

 # skip header

 if line[:1] == "#":

 continue

 # decode the fingerprint and compute the Tanimoto

 hex_value, id = line.split()

 fp = int(hex_value, 16)

 score = ((query & fp).bit_count() /

 (query | fp).bit_count())

 # Must be at least 0.95 similar

 if score >= 0.95:

 hits.append((score, id))

Order from highest to lowest score

for score, id in sorted(hits, reverse=True):

 print(id, score)

CHEMBL87121 1.0

CHEMBL74063 1.0

CHEMBL113 1.0

CHEMBL89062 0.9787234042553191

CHEMBL1498670 0.9787234042553191

CHEMBL143715 0.9787234042553191

CHEMBL284855 0.9782608695652174

CHEMBL600294 0.9583333333333334

CHEMBL483663 0.9583333333333334

CHEMBL480529 0.9583333333333334

CHEMBL26897 0.9583333333333334

CHEMBL26119 0.9583333333333334

CHEMBL21053 0.9583333333333334

CHEMBL1767 0.9583333333333334

CHEMBL1595028 0.9583333333333334

CHEMBL440329 0.9574468085106383

CHEMBL226211 0.9574468085106383

CHEMBL190 0.9574468085106383

CHEMBL1158 0.9574468085106383

CHEMBL113241 0.9574468085106383

CHEMBL1114 0.9574468085106383

Takes 2.5 seconds to search 2.1M MACCS keys.

Fast Fingerprint Similarity
Search is Not Easy!

Why go fast?
• Faster results enable more exploration.
• Sub-second response helps maintain flow. (Miller 1968)
• Can deploy on a wider range of hardware:
• Add search everywhere, including your web server.
• "The laptop you have is better than the GPU you don't."

• Emotional:
• Don't like "wasting" the computer.
• Want a faster implementation than anyone else.
• Annoyed by people who say their method is fast, 

but use a slow implementation as their baseline.

Python is slow

As a rough estimate, Python is 50x slower than C.

Depends very much on the algorithm!

Use a compiled language like C, C++, Rust, Julia,

Chemfp uses Python/C extensions with some inline assembly.

Caffeine search from Python takes chemfp 1.7 milliseconds.

Avoid processing
lines of text

• Process in chunks of text, or,
• Convert to a binary form which is easier to process

Search time dropped from 2.5 seconds to 1.6 seconds.
Of which only 0.77 seconds was spent in search.

I pre-processed the ChEMBL fingerprints into
a list, and saved it to a file as a Python pickle.

In chemfp I developed the "FPB" format for fast load times.

Match Data to
Representation

Python integers can be arbitrary length.

They store a count, and an array of that many
"digits". Each digit is a 15- or (usually) 30-bit value.

(Base 1,073,741,824)

More efficient to store a fingerprint as a byte string.
Easier for C code to access the fingerprint bits.

Avoid intermediate objects

score = ((query & fp).bit_count() /

 (query | fp).bit_count())

The Tanimoto calculation creates two temporary integers.

Instead, work more directly on the representation.

score = byte_tanimoto(query, fp)

Byte-string search
import pickle

from chemfp.bitops import byte_tanimoto

Load the pickled fingerprints

with open("byte_maccs.pkl", "rb") as f:

 fp_data = pickle.load(f)

MACCS fingerprint for caffeine

query = bytes.fromhex("000000003000000001d414d91323915380f138ea1f")

hits = []

for id, fp in fp_data:

 score = byte_tanimoto(query, fp)

 # Must be at least 0.95 similar

 if score >= 0.95:

 hits.append((score, id))

Order from highest to lowest score

for score, id in sorted(hits, reverse=True):

 print(id, score)

Now, only 0.60
seconds in search.

(Earlier was 0.77
seconds.)

(Overall performance is about the same because the load time increases.)

byte_tanimoto()
double byte_tanimoto(

 int num_words,

 const unsigned char *fpA,

 const unsigned char *fpB) {

 int num_in_intersection = 0;

 int num_in_union = 0;

 for (int i=0; i<num_words; i++) {

 num_in_intersection += popcount(fpA[i] & fpB[i]);

 num_in_union += popcount(fpA[i] | fpB[i]);

 }

 if (num_in_union == 0) {

 return 0.0;

 }

 return num_in_intersection / (double) num_in_union;

}

"popcount"?
The "population count" is the number of 1 bits in a word.

Hank Warren
"The Quest for an Accelerated

Population Count" in
"Beautiful Code"

Many algorithms for efficient
popcount calculation,

going back to the 1950s.

int lookup_table = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, ...};
int popcount(unsigned char c) {
 return lookup_table[c];
}

POPCNT instruction
Modern computers have a popcount CPU instruction:
• "POPCNT" on Intel and AMD
• "CNT" for NEON for ARM

Several ways you might get your compiler to use it:
• inline-assembly
• C compiler intrinsic:
• gcc & clang: __builtin_popcountll()
• MSVC: _mm_popcnt_u64()

• C++20's std::popcount()
• Rust and Julia have count_ones()
• WASM has i32.popcnt and i64.popcnt

These instructions work on a single word, usually 64 bits.
Nearly all fingerprints are a multiple of 64 bits.

(For MACCS, use 192 = (3 * 64) bits and pad with zeros.

Loop Unrolling

#include <stdint.h>

int byte_tanimoto(

 int num_words,

 const uint64_t *fpA,

 const uint64_t *fpB) {

 int num_in_intersection = (

 __builtin_popcountll(fpA[0] & fpB[0]) +

 __builtin_popcountll(fpA[1] & fpB[1]) +

 __builtin_popcountll(fpA[2] & fpB[2]));

 int num_in_union = (

 __builtin_popcountll(fpA[0] | fpB[0]) +

 __builtin_popcountll(fpA[1] | fpB[1]) +

 __builtin_popcountll(fpA[2] | fpB[2]));

 if (num_in_union == 0) {

 return 0.0;

 }

 return num_in_intersection / (double) num_in_union;

}

If all fingerprints are 166-bit MACCS keys stored in
192 bits then here's a version with no loop.

Precompute each
fingerprint popcount

Tanimoto(FPA, FPB) = c / (A + B - c)
Take a look again at the Tanimoto calculation:

A and B are constant and can be precomputed for each fingerprint.
Only need to calculate the intersection popcount for each pair.

(Some tools compute A, B and c each time!)

Replaces many popcount calculations with simple arithmetic.

Could store the count with each fingerprint.
If order doesn't matter, then group by popcount.

Group by popcount
from chemfp.bitops import byte_popcount, byte_intersect_popcount

Group target fingerprints by popcount (0, 1, 2, ... 166)

bins = [[] for i in range(167)]

for line in open("maccs.fps"):

 # skip header

 if line[:1] == "#":

 continue

 # decode the fingerprint

 hex_value, id = line.split()

 fp = bytes.fromhex(hex_value)

 bins[byte_popcount(fp)].append((id, fp))

MACCS fingerprint for caffeine

query = bytes.fromhex("000000003000000001d414d91323915380f138ea1f")

A = byte_popcount(query)

All fingerprints in the same bin have the same popcount B

for B, fp_data in enumerate(bins):

 AB = A + B

 for id, fp in fp_data:

 c = byte_intersect_popcount(query, fp)

 score = c / (AB - c)

 if score >= 0.95:

 print(id, score)

Inline functions
https://gcc.godbolt.org/z/1EfKrocjE

●

●

●
●
●
●

Not needed
if inlined.

Avoid Division and Floats
for id, fp in fp_data:

 c = byte_intersect_popcount(query, fp)

 score = c / (AB - c)

 if score >= 0.95:

 print(id, score)

Division is expensive. But not always needed.
Floats are also expensive - prefer integers.

for id, fp in fp_data:

 c = byte_intersect_popcount(query, fp)

 if (c * 20 >= (AB - c) * 19):

 score = c / (AB - c)

 print(id, score)

Every float can be turned into a rational number.
Even better, replaced by a rational with a small denominator.

The main loop from earlier:

Use a rejection
test when

expecting few
hits.

Alternatives
• The possible values for "c" and "A+B" is small:
• Store them all in a lookup table, or
• Compute the lookup table only for "A+B" 

• Store the numerator and denominator as small integers
• At the end, convert (in parallel) to float32 or float64

Avoid arithmetic
 if (c * 20 >= (A + B - c) * 19):

 score = c / (A + B - c)

 print(id, score)

threshold = 0.95;

AB = A + B;

min_c = (int)(threshold * AB / (1 + threshold));

/* If it is too small, round up */

if (((double) min_c) / ((double)(AB - min_c)) < threshold) {

 min_c++;

}

can be rewritten

if (c >= min_c):

 score = c / (A + B - c)

 print(id, score)

where "min_c" is constant for a given threshold, A, and B:

c ≥ (threshold * (A + B)) / (1 + threshold)?

Not so simple due to IEEE 754 rounding!

Fingerprint "arena"

index 0 1 2 3 4 5 6 ...
bits 00000001 10000000 00010100 00010001 00100011 10010001 11010100 ...

Store all fingerprints sequentially in a single byte array.
Align the fingerprints to the appropriate machine word size.

If ordered, also store the first position of each popcount.

popcount 0 1 2 3 4 ...

start

position 0 0 2 4 6 ...

Fingerprints with 3 bits set start at index 4
and go up to but do not include index 6.

POPCNT isn't so fast!
Intel CPUs have only a single POPCNT execution port.

Limited to one POPCNT per clock cycle.

2048 bits / 64 bits = 32 clock cycles
@ 2 GHz = 16 nanoseconds / fingerprint.

Wojciech Muła, Nathan Kurz, Daniel Lemire
"Faster Population Counts Using AVX2 Instructions"

AVX2 operates on 256-bits at a time.
Requires more instructions, but able to use more ports.

Overall about 30% faster!

And compilers will do this for you!

Memory I/O limits
CPUs are fast. RAM latency is slow.

It takes about 100 ns to fetch something from RAM.
(That's 5-10 Tanimoto evaluations!)

The memory manager will cache pages,
and try to predict what you want.

Can also provide explicit prefetch requests.

AVX2-based similarity search is one of the rare times
I've found prefetch made a difference.

Effect of popcount implementation
on Tanimoto search performance.

Andrew Dalke, "The chemfp project" (2019)

BitBound
No need to brute-force search all fingerprints.

Swamidass and Baldi pointed out a simple pruning method.

S. Joshua Swamidass and Pierre Baldi, "Bounds and Algorithms for Fast Exact
Searches of Chemical Fingerprints in Linear and Sublinear Time" (2007)

If the query threshold is T and the query has A bits set then

A*T ≤ B ≤ A/T

We've already sorted by popcount.
Use the index to ignore fingerprints which cannot meet the threshold.

Prune search space

S. Joshua Swamidass and Pierre Baldi, "Bounds and Algorithms for Fast Exact Searches
of Chemical Fingerprints in Linear and Sublinear Time" (2007)

The cutoff for RDKit's
Morgan (ECFP-like)

fingerprints is typically 0.4.

Fingerprint popcount
distribution in ChEMBL 30

C
um

ul
at

iv
e

di
st

rib
ut

io
n

 (i
n

m
ill

io
ns

)

Fingerprint popcount

Query has 70 bits set.

For threshold ≥ 0.4,
target must have

28 ≤ B ≤ 175 bits set.

Prunes about 3% of space.

k-NN search ordering
Preferentially search the popcount bins ordered by potential best score.

Highly similar fingerprints are likely to have a similar number of bits set.
(The converse isn't true.)

Update the bounds after each new neighbor.

BitBound Effectiveness

Single query search times for chemfp 3.3. Boxen plots for k = 2, 10, 100, and 1000
nearest-neighbor and threshold = 0.95, 0.80, 0.70, and 0.40 searches of ChEMBL
24. Each search samples 1000 fingerprints to use as queries so each query is
always found in the result. Python’s garbage collector was disabled for each

timing as it adds a roughly 25 ms delay about every 1000 timings.

Andrew Dalke, "The chemfp project" (2019)

NN search is sublinear(!)
PubChemMACSS

Open Babel
FP2

RDKit
Morgan

Time for k=1 nearest-neighbor search, scaling in the number of targets.

Andrew Dalke, "The chemfp project" (2019)

Multicore
I use OpenMP to parallelize NxN and NxM searches.

One query, one OpenMP thread.

Memory I/O issues are weird!

With 4 threads, if the queries are in popcount order than
there's 3x performance; in random order, only 1.6x.

Likely due to improved cache locality.

Using two threads for a single query was slower.
My best guess is the memory bandwidth was too low.

(Need to revisit on more modern hardware.)

Memory bandwidth
One DDR4-3200 memory channel is ~25 GB/s.

That's 105M 2048-bit fingerprints / sec.
About 10 ns / fingerprint.

Which is about the CPU time needed to evaluate a Tanimoto.

We should expect 1 CPU to consume one memory channel.

Imran S. Haque, Vijay S. Pande, and W. Patrick Walters

"Anatomy of High-Performance 2D Similarity Calculations" (2011)

More sophisticated use of caching in:

Approximate Search

Chun Jiang Zhu, Minghu Song, Qinqing Liu, Chloé Becquey, and Jinbo Bi

"A benchmark on indexing algorithms for accelerating molecular similarity search" (2020)

chemfp 1.6 was
the fastest for
perfect recall

chemfp 1.6
does not use

AVX2.

Sparse Fingerprints
Sparse fingerprints have many zeros.

Inverted indices are a form of compression.
If the density is ~0.05 or lower, use a sparse method like RISC.

Comparisons made using a range of fingerprint types and query types.

An
dr

ew
 D

al
ke

, "
R

IS
C

 a
nd

 D
en

se
 F

in
ge

rp
rin

ts
" (

20
19

)

Diversity Selection
Diversity means different things to different people.

Which compounds are most dissimilar from any other compounds?
- and dissimilar from compounds in a reference data set
- while still being reasonable

Pick compounds at random:
- but exclude compounds similar to previous picks
- or from a reference set
- while still being reasonable

MaxMin

Sphere Exclusion

Many other approaches (cluster w/ NxN
similarity matrix, simulated annealing, ...)

MaxMin

1. Pick one or more initial fingerprints.
2. From the remaining fingerprints, 

3. Add it to the picks.
4. Repeat until done.

I'll assume that "dissimilar" means "1-Tanimoto".

find the most dissimilar.

This is an approximate, iterative solution.

Sayle/RDKit algorithm
Simplified and not accurate.

(Uses a round-robin table instead of a priority queue.)

Make the initial pick.

For each fingerprint,
initialize search depth to 0
and score to its Tanimoto

with the initial pick.

Create a priority queue, with
smallest score at the head.

Pop the smallest item, get its
depth and score.

Found a
higher similarity?

Work through the picks.

U
pd

at
e

de
pt

h
an

d
si

m
ila

rit
y

an
d

re
tu

rn
 to

 q
ue

ue
.

Yes
No

Add new pick.

Repeat until done.

https://github.com/rdkit/UGM_2017/blob/master/Presentations/Sayle_RDKitDiversity_Berlin17.pdf

"Obvious" Improvements
• Hard-code the choice of Tanimoto similarity.
• Store the fingerprint's popcount with the fingerprint item.
• Use a faster intersection popcount method.
• Store 16-bit ratios of c/d rather than 64-bit doubles.

Result is about 2-3x faster.

Need to be fair!
RDKit's MaxMin is also faster if the
fingerprint are in popcount order.

Candidates vs. References
"Pick compounds from eMolecules

to improve ChEMBL diversity"

Can treat this as one large fingerprint set combining the
references (ChEMBL) and the candidates (eMolecules),

where the references are the initial picks.

Alternatively, interpret this as a nearest-neighbor problem.

Two-component MaxMin
As before, and track each
candidate's depth in the

references.

Pop the smallest item, get its
depths, score, and popcount.

In references?

Work through the references.

Found a
higher similarity?

U
pd

at
e

de
pt

h
an

d
si

m
ila

rit
y

an
d

re
tu

rn
 to

 q
ue

ue
.

Yes

Yes
Found a

higher similarity?

Work through the picks.No

U
pd

at
e

de
pt

h
an

d
si

m
ila

rit
y

an
d

re
tu

rn
 to

 q
ue

ue
.

Yes

No
No Add new pick.

Repeat until done.

BitBound MaxMin
When searching the reference arena,

don't simply go from start to end.

Use the BitBound NN search ordering:
• Enriches the chance of finding a near neighbor.
• Improves pruning.
• More complicated to implement.

"Pick 100 compounds from eMolecules
to improve ChEMBL diversity"

chemfp - 86 seconds
 RDKit - 2774 seconds

Unlike the picks, the reference arena is constant.

~30x

Initial MaxMin pick
Choose at random? In the middle? First? Last?

Pick the one with the lowest maximum similarity.

Set up a scoreboard for each fingerprint:
• "maximum seen score" and "at max"

Do 50 random sweeps:
• Randomly pick a fingerprint (these will be "at max")
• Find its similarity to the rest & update scoreboard

Set up priority queue:
• If smallest is "at max", it's the first pick.
• Otherwise, sweep using this fingerprint

Observation: The first fingerprint (when ordered by
popcount) is often also the most dissimilar to the rest.

HeapSweep
Can continue the process.

I leave the fingerprint in the heap (no compaction).
Full HeapSweep does NxN comparisons.

Takes about 50x longer (!) than MaxMin but gives an
exact solution.

Sphere Exclusion
1. Pick a fingerprint.
2. Remove all fingerprints which are sufficiently similar.
• radius = 1 - similarity threshold

3. Repeat until done.

Use BitBound and work on the popcount bin level.
1. Assume Tanimoto similarity
2. Bin based on popcount
3. Pick a fingerprint at random
4. Use BitBound to limit the bin search space
5. Remove similar fingerprints and compact each bin
6. If not done, go to 3.

Result is about 3-4x the performance of RDKit.

DISE
"D

ire
ct

ed
 S

ph
er

e
Ex

cl
us

io
n"

, G
ob

bi
 a

nd
 L

ee
 (2

00
2)

Choose the fingerprint with the lowest associated value.
The DISE paper assigns a rank based on"descending

similarities with three reference molecules."

Roger Sayle points out the ranking can be anything.
Cost might be an interesting one.

Biases selection towards the primary reference.

BitBound DISE
• Primary sort by popcount
• Secondary sort by the rank value
• Assume there are few duplicate ranks
• Then don't need an index or secondary bins

• During the fingerprint pick step:
• only count initial fingerprints with the lowest rank
• sample from them
• O(number of fingerprint bits)

 
If there are many duplicates, will need a secondary index.

Remove Junk
[82Rb] CHEMBL4297424

CN1CCC(N(C)C(=O)/C(C#N)=C/c2ccccc2)CC1 CHEMBL1740398

[K+].[OH-] CHEMBL2103983

BrCCCCCBr CHEMBL3182198

FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CHEMBL1899801

[Na+].[O-]Cl CHEMBL1334078

[Li+] CHEMBL1234004

Cl.Cl.NN CHEMBL542171

[123IH] CHEMBL1909276

[S] CHEMBL2105487

[C-]#[O+] CHEMBL1231840

I CHEMBL1233550

[Rb] CHEMBL1201326

[C] CHEMBL2106049

[Cs] CHEMBL4302507

[131Cs] CHEMBL4297365

[Kr] CHEMBL1233877

[85SrH2] CHEMBL2106034

[Se-2] CHEMBL4597517

[223Ra+2].[Cl-].[Cl-] CHEMBL2107816

[Xe] CHEMBL1236802

First 21 structures
from a MaxMin

search of ChEMBL 30

Make sure you filter out inappropriate structures first!

Suggests the need for new functionality.
"Has at least 1 neighbor with similarity T."

Use to select fingerprints similar enough
to your desired chemical space.

Should be faster than
"choose/count all neighbors with similarity T"

Scaling to large data sets?

MaxMin uses a lot of effectively random-access lookups.
~10x slower than the Tanimoto calculation.

At some point computing the full similarity matrix is faster.
(Estimating >~100K picks from the 2M in ChEMBL).

What about using multiple passes?
• Start with 1B fingerprints.
• Split into 100 sets of 10M fingerprints.
• In parallel, pick 10K fingerprints from each set.
• Merge the pick results into a set of 1M fps.
• Pick 100K fingerprints from those.

Thanks!
• Roger Sayle
• The RDKit developers
• Jakub Gunera

• Command-line tools and Python API
• Interfaces to RDKit, OpenEye, Open Babel, and CDK
• Designed to be embedded in existing tools/servers
• Source code license
• macOS and Linux
• no time limit on use (doesn't require ongoing support)

• Binary license for eval and academics
• Linux only

• No cost to academics and independent researchers

http://chemfp.com/

