

June 08, 2022

Katana @ Cambridge Cheminformatics Meeting

Cheminformatics At Scale On a Graph Platform

Andrew Stolman

Senior Software Engineer

astolman@katanagraph.com

Special thanks to

- Bo Wu, Suman Bera, Thomas Cook, Kamesh Peri, Chris Gessner, Gurbinder Gill and everyone at Katana
- Abhik Seal, Brian Martin, Phillip J Hajduk, Jennifer Van Camp and our collaborators at Abbvie

Introduction: what are graphs?

- Graphs are abstract objects which represent relationships among entities made up of **nodes** and **edges**
- Graphs can represent **heterogeneous** data and complex relationships

KATANA GRAPH

Distributed graph platforms

Distributed graph platforms are for handling millions and billions of nodes and edges

Graph Compute Domains

ChEMBL 30 Graph Schema

- 2.3M nodes
- 37.3M edges
- 76 node types
- 49 relation types

OpenCypher introduction

- OpenCypher is the most popular open source graph query language
- A query language like SQL but customised to search graph patterns
- Example:

MATCH (a:compound)-[r:has_activity_against]-(b:target{name:"target"}) RETURN count(r)

Finds all compounds which are known to have activity against a given target

compound

Count all the relationships found

has_activity_against

Katana OpenCypher rdkit integration

- We extended OpenCypher with the following functions:
 - Find minimum common substructure
 - RDK fingerprint
 - Morgan fingerprint
 - Topological torsion fingerprint
 - Erg fingerprint
 - Tanimoto similarity
 - Similarity search
 - Substructure search

K

Similarity indexing

For similarity search indexing we use **distributed minhash LSH**

Benchmarks were run on a single machine with 1K random guery molecules

Katana 24x faster than PostGres

Substructure index

- Distributed substructure index is sharded across hosts
- For each bit in the fingerprint, each host keeps a count of the number of molecules which set that bit in their pattern fingerprint, as well as a collection of their ids.
- The query molecule is compared to all molecules which share the least common bit with it (graph isomorphism)
- 7x faster than postgres on 1K random query molecules

Query molecule	1	0	1	0
	1			
Molecule 1	0	0	0	1
		•		
Molecule 2	1	0	1	1 2
		0	0	
Molecule 3	1	0	0	0
	0			
Bit position	U	1	2	3

Query molecule is compared to molecule 2 only

Example cypher query with heterogeneous data

Cypher:

MATCH (n: compound)-[:CID]-(:PubChem_BioAssay)-[]-(:gi)-[]-(:uniprot)-[]-(gene:gene)
--

WHERE n.canonical_smiles IN substructure_search("C(Nc1ccccc1)Nc1ccc(Oc2ccncc2)cc1")

RETURN gene.label, count(distinct n)

English:

For every compound-to-gene path

Where the compound contains a given substructure

Return the name of the gene and how many compounds with the given substructure interact with it

Beyond Querying

Therapeutics Data Commons (TDC)

ADMET Group Challenge: Absorption, Distribution, Metabolism, Excretion, and Toxicity prediction tasks

Given a drug candidate's structural information (SMILES), predict its ADMET profile.

- 22 ADMET Datasets in TDC.
 - Binary Classification or Regression tasks
 - Fixed Evaluation Metric
 - Scaffold split for test data

hERG	blockers	•Classification: predict whether a drug will block hERG or not.
С	aco-2	•Regression: predict the Caco-2 cell effective permeability
BBB (E B	Blood-Brain arrier)	 Classification: predict whether a drug will penetrate blood-brain barrier.

Molecular Property Prediction: Current Approaches

KATANA GRAPH[™]

Nolecular Property Prediction: Current Approaches

SimGCN: A New Approach towards Molecular Property Predictions

• How can we exploit the structural similarity of the molecules?

SimGCN

• Train a GNN (GCN, GAT) model on the similarity graph: Node Classification/Regression task.

Similarity Graph Construction

- Threshold Graph: link two drugs if their similarity > threshold
- KNN Graph: Connect each drug to its k most similar drugs

https://github.com/KatanaGraph/SimGCN-TDC

(k

SimGNN Pipeline for Molecular Property Predictions

Node Classification Based Approach: Domain-Specific Knowledge Infusion

(K

Success of SimGCN TDC ADMET Benchmarks

• SimGCN has the highest number of leading entries!

Tasks: absorption/distribution/metabolism/toxicity prediction

Datasets: Half_Life_Obach, Clearance_Microsome_AZ, BBB_Martins, Pgp_Broccatelli, CYP2C9_Substrate_CarbonMangels etc.

Success of SimGCN in TDC ADMET Benchmarks

Some of our entries at TDC leaderboard (<u>https://tdcommons.ai/</u>)

TDC.Bioavailability_Ma Leaderboard

Leaderboard

(K)

Rank	Model	Contact	Link	#Params	AUROC 1
1	SimGCN	Suman Kalyan Bera	GitHub, Paper	1,103,000	0.748 ± 0.033
2	RDKit2D + MLP (DeepPurpose)	Kexin Huang	GitHub, Paper	633,409	0.672 ± 0.021
3	ContextPred	Kexin Huang	GitHub, Paper	2,067,053	0.671 ± 0.026
4	AttentiveFP	Kexin Huang	GitHub, Paper	300,806	0.632 ± 0.039
5	NeuralFP	Kexin Huang	GitHub, Paper	480,193	0.632 ± 0.036
6	CNN (DeepPurpose)	Kexin Huang	GitHub, Paper	226,625	0.613 ± 0.013
7	Morgan + MLP (DeepPurpose)	Kexin Huang	GitHub, Paper	1,477,185	0.581 ± 0.086
8	AttrMasking	Kexin Huang	GitHub, Paper	2,067,053	0.577 ± 0.087
9	GCN	Kexin Huang	GitHub, Paper	191,810	0.566 ± 0.115

TDC.hERG Leaderboard

Leaderboard

Rank	Model	Contact	Link	#Params	AUROC 1
1	SimGCN	Suman Kalyan Bera	GitHub, Paper	1,103,000	0.874 ± 0.014
2	RDKit2D + MLP (DeepPurpose)	Kexin Huang	GitHub, Paper	633,409	0.841 ± 0.020
3	AttentiveFP	Kexin Huang	GitHub, Paper	300,806	0.825 ± 0.007
4	AttrMasking	Kexin Huang	GitHub, Paper	2,067,053	0.778 ± 0.046
5	ContextPred	Kexin Huang	GitHub, Paper	2,067,053	0.756 ± 0.023
6	CNN (DeepPurpose)	Kexin Huang	GitHub, Paper	226,625	0.754 ± 0.037
7	GCN	Kexin Huang	GitHub, Paper	191,810	0.738 ± 0.038
8	Morgan + MLP (DeepPurpose)	Kexin Huang	GitHub, Paper	1,477,185	0.736 ± 0.023
9	NeuralFP	Kexin Huang	GitHub, Paper	480,193	0.722 ± 0.034

Takeaways

• Chemical Data as graphs: Powerful unified representation

- Unlocks new analytics and machine learning capabilities
- Break data silos
- Distributed computation at scale required to search billion scale enumerated datasets.
- Unified platform for end-to-end pipelines
- Katana Graph is building the platform for doing this at scale